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In the large shear region, concentrated colloidal systems exhibit two characteristic layered struc-
tures under an oscillatory shear flow [Ackerson and Pusey, Phys. Rev. Lett. 61, 1033 (1988)]. The
two structures have close packed triangular lattices stacked perpendicular to the shear rate (velocity
gradient) vector but are different with the orientation of lattice vectors. The lattice is rotated by
30° or 90° at the transition point. We carried out nonequilibrium molecular dynamics simulations
in a model atomic system interacting via a short range repulsive force and obtained structures cor-
responding well to those observed in the Ackerson-Pusey experiments. The mechanism of phase
changes in this system can be explained by potential energy calculation on two sliding neighboring
layers. In this model calculation, the most stable structures under oscillatory shear flows are those
avoiding the overlap with particles in neighboring layers, which thereby reduce the dissipation due

to shear oscillation.

PACS number(s): 62.10.+s, 64.60.—i, 62.20.—x, 82.70.—y

I. INTRODUCTION

A variety of nonequilibrium interparticle structures
have been identified in colloidal suspensions undergoing
a steady shear flow [1-4] and in computer simulations of
atomic systems [5-8]. A typical example is the “string-
order” phase discovered by Erpenbeck in molecular dy-
namics simulations of a hard sphere system [5]. In this
phase, particles are aligned along lines parallel to the
flow direction and move keeping their sequence in the
line. This line is named a string. Strings are arranged in
a triangular lattice in a plane perpendicular to the flow.
The string-order phase has not yet been confirmed in ex-
periments but the discovery of this structure has aroused
much interest in shear induced systems.

Characteristic structural changes have been also re-
ported in an oscillatory shear flow. Ackerson and Pusey
carried out light scattering studies in concentrated sus-
pensions of hard colloidal spheres [9,10]. At a volume
fraction just below the freezing concentration, two suc-
cessive structural changes occurred with the increase of
the amplitude of the shear oscillation.

At an intermediate shear rate, their light scattering
pattern corresponded to a face centered cubic (fcc) struc-
ture when the spectrum was taken in a narrow period
near the extrema of the oscillation cycle. The scatter-
ing patterns at two extrema were mirror images of each
other. Ackerson and Pusey interpreted their result as the
sliding motion of close packed triangular lattices in the
fcc structure. The close packed layers (denoted A, B,
or C) are stacked normal to the velocity gradient vector.
Two types of twins, ABCABC --- and ACBACB - - - ap-
pear alternatively, synchronizing with the shear oscilla-
tion. Ackerson called this structure “fcc” order and, here-
after, we will also refer to this as a “fcc” structure.

At a higher shear rate, another structure with a hexag-

1063-651X/95/51(6)/5944(10)/$06.00 51

onal scattering pattern appeared. This was also inter-
preted as randomly stacked close packed layers [10]. A
clear distinction between these two structures is the ori-
entation of the basis vectors of the underlying triangular
lattices. At a high shear rate, the triangular lattice is
rotated by 30° or 90° around the velocity gradient vec-
tor from that in the “fcc” structure and the basis vec-
tor points in the direction parallel to the velocity vector.
Ackerson called this “layer” order and we will also refer
to this as a “layer” structure.

We have investigated structural changes occurring un-
der an oscillatory shear flow by nonequilibrium molecular
dynamics (NEMD) simulations [11,13-17]. In the oscil-
latory shear case, Morriss and Evans carried out NEMD
simulations of viscoelasticity and investigated the fre-
quency dependence of the viscosity [18]. The viscosity
is obtained as a ratio of the response to artificially im-
posed external forces in the NEMD method. The func-
tional form of external forces is determined so that the
response of a system coincides with the requirement in
the linear response theory (Green-Kubo relation) when
the external forces are weak. The SLLOD algorithm is
known to give the correct response even at a high shear
rate, i.e., in the nonlinear region when it is employed
without a thermostat [11]. When a thermostat is added
to the algorithm, as we employed in our simulation, it
is considered an approximation that can produce reason-
able results for the transport properties [12]. We carried
out simulations with particles interacting via a Weeks-
Chandler-Andersen (WCA) potential because this po-
tential reduces the computational effort. It is already
known that the main features of structural changes oc-
curring at a high shear rate do not depend much upon the
choice of the potential in the steady shear case [13]. In
all NEMD simulations with Lennard-Jones, hard sphere,
soft sphere, or WCA potentials, qualitatively similar re-
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sults have been obtained [5,7].

Preliminary simulations were carried out at several
densities. However, in the present article, we report only
the result at a density in the crystalline region. The tran-
sition from the “fcc” to “layer” structures occurs very
clearly in this condition. A phase diagram in density—
shear rate space, and further investigations on this sys-
tem will be reported in a forthcoming article. The initial
crystal structure changed to a new layered structure at
a certain shear rate. By microscopic structure analysis,
it was confirmed that this layered structure corresponds
well to the “fcc” structure proposed by Ackerson and
Pusey. Further increase of the shear rate induced an-
other structural change to the “layer” structure. Thus,
we obtained similar phase changes to those in colloidal
suspensions in simulations with a model atomic system.

The structural changes in our system and in colloidal
suspensions were analyzed on the basis of the sliding layer
model. The basic assumptions of this model are the for-
mation of close packed layered structures and the sliding
of a layer relative to neighboring layers by application
of the shear. We employed the sliding layer model in
which a contribution of short range interactions is taken
into consideration. The average potential energy over
one oscillation period was used as a quantity indicating
the stability of structures. By this model calculation, it
is shown that both the “fcc” and “layer” structures take
global minimum energy among all possible layered struc-
tures with various oscillation directions and averaged po-
sitions and the transition mechanism is explained in this
model calculation.

In Sec. II, the NEMD method we employed in our sim-
ulations is reviewed [14]. We also present, in the same
section, our model for the simulations of colloidal systems
and how the response to the externally applied shear
stress is calculated. In Sec. III, results of our simula-
tions are presented and compared with the experimental
results. The analysis of simulations based on the sliding
layer model is given in Sec. IV.

II. SIMULATION METHOD AND MODEL

A. The NEMD method

Experimentally, the viscosity is defined as a ratio of
the shear stress and the velocity gradient (shear rate).
We consider a uniform shear deformation (Couette flow)
in which the flow and the velocity gradient are paral-
lel to the z and y axes, respectively. The viscosity 7 is
expressed as

n=-——, (1)
where P, is the zy component of the stress tensor and
¥ is the shear rate,

v,
1=y (2)

in which v, is the £ component of the velocity.

In the present article, we employed the SLLOD algo-
rithm to calculate the response to the externally applied
shear [11]. The equations of motion are

. Pi .
QGiz = i + VGiy, (3)
. Di
Qiy = ﬁa (4)
. Di
Gz = ; (5)
p;m = Fi:c - ;Ypiy — OPig, (6)
p;iy = Fiy — OPiy, (7)
p:iz = Fiz — QPiz; (8)

where q; and p; are the position and the momentum
of the particle ¢, respectively. The second terms on the
right-hand side of Eq. (3) and Eq. (6) are the external
fields imposed in the SLLOD algorithm.

To carry out simulations in a homogeneous condition,
we also employed the Lees-Edwards periodic boundary
condition [15]. The image cells in the y direction slide in
the z direction with velocity; veeny = yL, where L is the
edge length of the simulation cell.

Heat is generated in this type of nonequilibrium sim-
ulations. The third terms on the right-hand side of Eqgs.
(6)—(8) correspond to a thermostat (the Gaussian ther-
mostat) that removes the heat from the system and keeps
the temperature at a constant value [16]. The imposi-
tion of the constraint of the constant kinetic energy is
expressed as an additional term —ap;. The expression
for the undetermined multiplier « is

N
Z (Fz ‘P — 'ypiypi:c)
a==L : (9)

N
> p
=1

These equations of motion were integrated with a fifth-
order predictor-corrector algorithm. In the thermostat
in Egs. (3)—(8), a linear streaming velocity profile is as-
sumed. This assumption is known as the profile biased
thermostat (PBT) and the inappropriateness of this type
of thermostat was pointed out by Evans and Morriss [17].
In a pure particle system without solvent, the linear ve-
locity profile cannot be maintained at a large shear rate
[19]. The string phase is now considered as an artifact
for an atomic system [5,20]. However, several pieces of
evidence show that our model (an atomic system with a
PBT) describes fairly well the behavior of colloidal sus-
pensions [7-11,21]. In suspensions, the motion of a parti-
cle is strongly hindered by the solvent and the linear ve-
locity profile is maintained well even at a large shear rate.
Therefore, though the frictional force acting on particles
from the solvent is completely ignored, the PBT seems
to take it into consideration in an effective way and to
describe the colloidal suspension well. The string phase
is also obtained in Brownian dynamics simulations which
do not employ the PBT [22,23]. We consider that our re-
sults for oscillatory shear flow also provide support for
our model.
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B. Model

It is known that the structures in colloidal systems are
very similar to those in a hard sphere system [24,25].
The most dominant factor for structural changes is con-
sidered to be the repulsive force due to the overlap of
atomic cores. Under nonequilibrium conditions, very
strong driving forces are imposed to the system. The
interatomic attractive forces are less important in this sit-
uation. For hard sphere, soft sphere, and Lennard-Jones
systems, a similar transition from fluid to the string phase
is observed in simulations under steady shear flows.

We employed an atomic system interacting via the
WCA potential to simulate the colloidal suspension sys-
tem,

s =eef(5)- ()} +

B(r) =0 (r>2¢0), (10)

(r < 280),

which is a Lennard-Jones potential truncated at r. =
21/85 and expresses the “short range” repulsive interac-
tion between colloidal particles.

Reduced units with the characteristic energy e, the
length o, and the mass of a particle m are introduced.
Then, the unit of time is (mo?/€)'/? and the unit of
temperature is €/k. We start our simulations from two
types of initial configurations. They are the fcc crys-
tals whose (100) or (111) vectors point parallel to the
velocity gradient vector (the y axis). The system size
N for (100) orientation is 256 or 1372. In the (111)
case, we employed a 504 particle system. The simula-
tion cell consists of 3 x 4 x 7 orthorhombic unit cells with
edge lengths (7.776, 8.248, 7.857) containing six parti-
cles in each of them. This system size is selected so that
the shape of the simulation cell becomes very close to
a cube. The simulations were carried out at T' = 0.75
and p = 1.0. Since the WCA potential has the triple
point at p = 0.93 and T = 0.75, our initial condition
corresponds to a crystalline state. We introduce the si-
nusoidally changing shear rate ¥(t) = 7o cos(wot), where
~o is the amplitude of shear rate and wy is the frequency.
The value of wg is 4.0, and unit time ¢ is w/2000. Then
one oscillation cycle corresponds to 500 time steps. The
viscosity is averaged over 80 cycles after 80 cycles of equi-
libration.

C. The frequency-dependent shear stress

The transport coefficient in the time-dependent case is
defined as the ratio of the Fourier-Laplace transforms of
P., and 4.

w) = Poy(w)

n(w) ()

_ Py (w)
Yo

§(w — wo), (11)

where P,y (w) denotes the temporal Fourier Laplace
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FIG. 1. Comparison of frequency spectra of P,y(w) in sim-
ulations with (a) 40000 and (b) 80000 time steps. The real
part is shown in this figure. The frequency of applied shear
wo is 4.0, 8t is 7/1000, and the amplitude -y is 0.1.

transform of the shear stress Pgy(t) and 6(w) is the &
function.

To check our algorithm, we calculated the frequency
dependence of the viscosity 7(w) at very small shear am-
plitude (yo = 0.1) in liquid state at p = 0.6 and T = 1.1
in a 256 particle system. This is the same condition as
reported in Allen and Maréchal [26]. In the small shear
region, the hydrodynamical effect is so weak that the sys-
tematic response of Py, (t) to the shear rate is hidden in
large thermal fluctuations. Therefore, long simulations
over many oscillation cycles are required to obtain a sig-
nificant signal in the Fourier Laplace transform of P, (t).
To check this point, we calculated the real parts of P,y (w)
for two runs, where the number of cycles in each run is
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FIG. 2. The frequency dependence of 77(wo) at very small
strain amplitude (yo = 0.1) in a liquid state at p = 0.6 and
T = 1.1. Open and solid circles indicate real and imaginary
parts of n(wo), respectively.
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160 and 320. The frequency wg is 4.0 and 4t is «/1000
in both runs. Results are shown in Fig. 1. The signal at
wo = 4.0 is clearly seen in 320 cycles, contrary to the ob-
scure signal in 160 cycles. Thus, in a series of simulations
in this subsection, we used 320-400 cycles to calculate
the transport coefficients. The frequency dependence of
n(wo) at 70 = 0.1 is shown in Fig. 2. The open and
solid circles indicate real and imaginary parts of n(wo),
respectively. These n(wp) curves are in good agreement
with the result reported in Allen and Maréchal. In this
way, we confirmed that our program works well even in
the time-dependent case.

In the Maxwell model of viscoelasticity, the complex
viscosity is expressed as

Mo
1—iwr’

n= (12)
where 79 is the viscosity at zero frequency and 7 is the
characteristic relaxation time. Our results in Fig. 2 can-
not be expressed in a simple relation of Eq. (12), but
the phenomenological interpretation that the response is
viscous at low frequency and elastic at high frequency is
also plausible [26,27]. We chose the frequency wo = 4.0
close to the maximum of the imaginary parts of n(wo),
i.e., the inverse of the relaxation time, in the following
simulations.

III. RESULTS
A. Structure changes in the (100) fcc case

The v dependence of structural and dynamical behav-
ior in the oscillatory shear flow is studied in simulations
started from an initial configuration with the fcc crystal
whose (100) plane is parallel to the y-z plane. The 7o
dependence of the real parts of n(wp) is shown in Fig. 3.
At a small shear amplitude (yo < 0.90), the crystal keeps
its original structure but n(wg) increases rapidly with ~o.
Then at about yo = 0.9, n(wp) decreases suddenly. This
suggests the structure changes from the initial fcc crys-
tal to another structure. Another structural change at
Yo = 1.8 is also indicated in Fig. 3.

We repeated our simulations with 1372 particles to in-

2 T

k1005fcc

1(o)

1 2 4

FIG. 3. The o dependence of the real part of n(wo), at
p = 1.0 and T = 0.75. The initial configuration is the (100)
fcc crystal. Two characteristic peaks at yo = 0.9 and 1.8 are

observed.
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FIG. 4. Particle configurations projected onto the y-z plane
in the “fcc” structure at vo = 1.3. (a), (b), (c), and (d) rep-
resent 0, 1/4,1/2, and 3/4 of oscillation cycles, respectively.
The shear strain vanishes at 0 and 1/2 cycles.

vestigate the microscopic structure in more detail in each
region. At first, we investigated the structure at yo = 1.3
in the intermediate region. The particle configurations
projected onto the y-z plane are depicted in Fig. 4 at (a)
60000, (b) 60250, (c) 60500, and (d) 60750 time steps,
which correspond to 0, 1/4, 1/2, and 3/4 cycles of the
shear oscillation. The shear strain vanishes at 0 and 1/2
cycles. Layered structures normal to the y axis are al-
ways visible throughout one cycle. In each layer in the
z-z plane, the particles align regularly and oscillate in re-
sponse to the shear. The deviation of particles from one
layer and movement to another layer are not observed.
In Fig. 4, layers normal to the y axis are tilted. This
tilt occurs by the connection of a layer to the neighbor-
ing layer by the periodic boundary condition in the z

° (a) (b)
4t 4
= 37 -
572’_
1.
0
0 v
5 — —
.l (|
= 37 -
032_
1t
0 R
0 1 2 3 4 5 0

r

FIG. 5. Change of the pair radial distribution function g(r)
in the “fcc” structure at o = 1.3. The notation is the same

as in Fig. 4.
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FIG. 6. Particle configurations projected onto the z-z
plane in the “fcc” structure at vo = 1.3. (a) and (b) rep-
resent 1/4 and 3/4 cycles corresponding to Figs. 4(b) and
(d), respectively. The symbols o, e, and [ represent particles
in the top, the middle, and the bottom layers, respectively.

direction. We repeated similar simulations many times
and got tilted structures in the majority of runs. This
type of mismatching, due to the periodic boundary con-
dition, is well known in crystalline structures obtained
by simulations of homogeneous nucleation. In Fig. 5,
the changes of the pair radial distribution functions at
the same time cycles as in Fig. 4 are shown. Each pair
radial distribution function is obtained by averaging over
five time cycles. At 1/4 and 3/4 cycles when the shear
strain in the flow reaches extrema, the pair radial dis-
tribution functions have the peaks at v/1,v/2,/3, VAa,...
times of the first one. This is the pattern expected in the
fcc crystal.

In the “fcc” structure proposed by Ackerson and Pusey,
the sliding of the layers is synchronized with the shear os-
cillation between two types of fcc twins. We investigated
the arrangements of particles in each layer to confirm this
dynamical picture. The projections of particle positions
onto the z-z plane are depicted in Fig. 6 at 1/4 and 3/4
cycles corresponding to Figs. 4(b) and (d). The symbols
o, e, and [J represent the particles in the top, the middle,
and the bottom layers, respectively. The direction of the
basis vectors connecting two nearest neighbor particles
is parallel to the z axis. These structures are consistent
with the ABC [Fig. 6(a)] and the ACB [Fig. 6(b)] stack-
ing. They are mirror images of each other. Therefore, our
results clearly show the oscillation between twins of the
fce structure.
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FIG. 7. Particle configurations projected onto the y-z
planes of the “layer” structure at yo = 4.0. (a) and (b) rep-
resent 0 and 1/4 cycles, respectively.
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FIG. 8. Change of the pair radial distribution function g(r)
in the “layer” structure at yo = 4.0. (a) and (b) represent 0
and 1/4 cycles, respectively. g(r) does not have the second
peaks seen in the “fcc” structure.

In this simulation starting from the (100) fcc crystal,
the initial crystalline structure is broken at o = 0.90,
and the particles reform the (111) fcc structure in which
triangular lattices are stacked perpendicular to the y axis.
However, the number of the particles in this simulation
(N =4x7x7xT7) in the initial (100) frame does not
allow a perfect arrangement in the (111) fcc orientation.
Therefore, the fcc structure appearing at the extrema of
shear oscillation is distorted. The particle arrangement
deviates considerably from perfect triangular lattices and
there exist many lattice defects. Nevertheless, the struc-
ture at 9 = 1.3 agrees very well with the “fcc” structure
concluded from the experimental results. Note that we
also carried out simulations starting from an amorphous
structure prepared by the quenching of the liquid state
and the same structural change described here is also
observed.

Next, we show the result at yo = 4.0, i.e., in the re-
gion beyond the second structural change (recall Fig. 3).
The projections of all particles onto the y-z plane and
the pair radial distribution functions at 1/4 and 3/4 cy-
cles are shown in Figs. 7 and 8. At both v = 1.3 and
Yo = 4.0, the stacked layers of the close packed trian-
gular lattices are formed parallel to z-z planes, but the
orientation of the lattice is different. The projection of
particle positions in one z-z layer at o = 4.0 is depicted
in Fig. 9. The bond vector is parallel to the z axis at
Yo = 4.0. The orientation of the triangular lattice is ro-
tated by 30° or 90° from the direction at vg = 1.3. At
1/4 cycle, close packed layers have a tendency to register

FIG. 9. Particle configuration in one layer perpendicular to
the y axis in the “layer” structure at o = 4.0. The orientation
of the triangular lattice is rotated by 30° or 90° from that in
“fcc” structure.
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so that each particle is situated over the center of a close
packed triangle of atoms in neighboring layers, but the
stacking of the layers is rather random in contrast with
the systematic ABCABC - .- stacking in the fcc struc-
ture. The pair radial distribution function keeps almost
the same shape and indicates not the “fcc” structure but
a structure similar to disordered phase throughout one
cycle. Therefore, this structure agrees very well with the
“layer” structure observed by Ackerson and Pusey.

B. Structure changes in the (111) fcc case

In the preceding section, we reported the shear induced
structural changes in the simulation starting from the
(100) fcc crystal. At o larger than 0.9, the initial crys-
tal changes into the “fcc” structure where the y axis is
parallel to the (111) direction. When the shear is applied
parallel to the z axis, the layers with the (111) stacking
can slide more easily than those with the (100) stacking
because the distance between layers is larger in the (111)
stacking. The distance is (1/2)'/2a in the (100) fcc crys-
tal and (2/3)'/2a in the (111) fcc crystal, where a is the
distance between the nearest neighbor pairs. Therefore,
it is reasonable to transform from the (100) fcc crystal
into the “fcc” structure with the increase of .

If the (100) fcc crystal is less stable than the (111)
fcc crystal under shear oscillation, the structural change
from the (100) fcc crystal to the “fcc” structure might
be an artifact due to an inappropriate initial condition.
Therefore, we also carried out the simulation under an
initial configuration of the (111) fcc crystal. In this sim-
ulation, the “fcc” structure has no lattice defects. We
hoped that we could investigate the transition from the
“fcc” to “layer” structures very clearly.

The o dependence of (wp) is shown in Fig. 10. Again,
n(wo) has two peaks at o = 0.6 and 2.6. From the inves-
tigation of the structures, we conclude that the second
peak at 9 = 2.6 corresponds to the transition between
the “fcc” and “layer” structures also observed in Sec.
IIT A. Throughout this transition, the number of layers
and the distance between layers do not change but the
lattice is rotated by 30° or 90°.

2 .

(111) fee
15 | -

g 117 i
&

Yo
FIG. 10. The o dependence of the real part of n(wo), at
p = 1.0 and T = 0.75. The initial configuration is the (111)
fcc crystal. Two characteristic peaks at o = 0.6 and 2.6 are
observed.
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FIG. 11. Three typical structures appearing in oscillatory
shear flow. (a) (111) fcc, (b) “fcc,” and (c) “layer” struc-
tures. The average position and the oscillation relative to the
neighboring layer are depicted.

Near the first peak, the triangular lattice in each layer
is neither broken nor rotated. Why does n(wo) have a
peak even though the system keeps the same lattice struc-
ture? The detailed mechanism will be presented in the
next section but a qualitative explanation is as follows.
When the amplitude of shear oscillation is very small, a
particle oscillates around the lattice position in a static
fcc crystal. The average particle position is situated just
over the center of an atomic triangle in a neighboring
layer. This situation is depicted in Fig. 11(a). On the
other hand, oscillation between two types of fcc twins oc-
curs in the “fcc” structure. A particle must move from
the center point of a triangle to the center of the neigh-
boring triangles. The average position is situated just
over the midpoint of the edge of a triangle. This is de-
picted in Fig. 11(b). Therefore, the difference between
these two structures near yo = 0.6 is the registration of
one layer relative to the neighboring layer. The aver-
age position moves from the center of the triangle to the
midpoint of the edge at yo = 0.6.

IV. DISCUSSION
A. The sliding layer model

In our simulations at p = 1.0, two structures, “fcc” and
“layer” structures in Ackerson’s notation, are observed
both in the (100) fcc and the (111) fcc cases. In this sec-
tion, we analyze the mechanism of a series of structural
changes and the stability among structures by means of
a simple model calculation based on the sliding of the
rigid layers.

We consider structures in which triangular lattices are
stacked parallel to the z-z plane. Each layer is rigid
and does not deform during shear oscillation and only
the sliding between neighboring layers is allowed in this
model. This type of structures in a colloidal system
undergoing the shear was proposed by Hoffman in the
steady shear case [4]. Hoffman explained the appearance
of an ordered structure at a high shear rate in his model.
The shear viscosity becomes smaller in an ordered struc-
ture than a random one under an applied shear. Tomita
and Van de Ven studied the compression of layers in the
shear gradient direction in their model [28]. A similar
model is introduced by Ackerson to explain the experi-
mental results under oscillatory shear flows [10]. Acker-
son studied the condition in which the hard sphere par-
ticles contact each other. The stability limit of the “fcc”
structure can be explained in this way. But the relative
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0 1 2 3
Yo

FIG. 12. 7, dependence of the average potential energy
(E). The solid, dashed, and dotted lines and open circles
indicate (111) fcc, “fcc”, “layer” structures and the global
minimum curve in the sliding layer model, respectively. Solid
circles are the results obtained in MD simulations starting
from a (111) fcc crystal.

stability between “fcc” and “layer” structures is not de-
termined. Ackerson considered that the “layer” structure
would appear after the “fcc” structure became unstable.
On the other hand, our rigid energy calculation clari-
fies not only the stability between these two structures
but also predicts the most stable state among all possi-
ble layered structures with different oscillation directions
and average particle positions.

We assume the sliding of layers to be uniform in the
shear gradient direction and a WCA potential between
the particles. Therefore, it is sufficient to consider the
relative sliding of two layers, A and B. In some cases, this
simplification is not appropriate. For example, in the hcp

structure where the layers stack in ABAB - - - fashion, the
relative motions of A-B and B-A layers under the shear
are not equivalent. A unit of three layers ABA should be
taken into consideration in this case. We are interested
in fcc or ABCABC stacking most of time, where the
relation of A-B, B-C, and A-C is equivalent. The relative
motion of a particle in the layer A to the layer B is

zf = (zf) + ZgyAB sin wot. (13)
wo

The parameters in this sliding are {(z#), the average posi-
tion of the particle relative to the triangular lattice in the
layer B; yag, the distance between layers, in the (111) fcc
case, yap = (2/3)'/%a; the direction of oscillation; and
~Yo/wo, the amplitude of oscillation. The average of the
potential energy is calculated over one oscillation period.
We consider that the potential energy is a good quantity
to estimate the stability of structures in this situation
because the MD simulations were carried out at constant
temperature. Moreover, there is no extra entropy arising
from the lattice defects because we consider the sliding
of rigid layers. Therefore, the potential energy will dom-
inate the free energy of the system.

B. The (111) fcc case

At first, we compare the stability of the structures in
simulations starting from the (111) fcc structure. Three
typical structures are as follows:

(a) The (111) fcc crystal. The motion of layers occurs
near the static fcc structure. The particles are situated
over the center of the triangular lattice of the neighbor-
ing layer. Oscillation along the z direction indicated in
Fig. 11(a) is the most stable one at small 9. The 7o
dependence of this structure is given by the solid curve

TABLE I. The numerical values obtained in the MD simulation and the model calculation when
7o is increased in the (111) fcc case. (Emp) and P are the time averaged potential energy and
the pressure of one particle and (Emode:) is the time averaged potential energy from the model
calculation. 7reqi and 7Mimag are the real and imaginary parts of n(wo).

Yo (EMD> (Emodel> P MNreal MNimag
0.2 0.9127 0.9098 1.912x10°2 0.5976 1.8478
0.4 0.9472 0.9247 1.969x1072 0.7373 1.7438
0.6 0.9899 0.9590 2.037x1072 1.1830 0.5843
0.8 0.9990 0.9804 2.037x1072 0.9596 0.3374
1.0 1.0099 0.9599 2.065x1072 0.8140 0.3056
1.2 1.0179 0.9790 2.075x1072 0.7300 0.2838
1.4 1.0354 0.9615 2.099x1072 0.6459 0.3132
1.6 1.0642 0.9572 2.137x1072 0.6062 0.3390
1.8 1.1193 0.9722 2.211x1072 0.6049 0.3866
2.0 1.1841 1.0012 2.296x1072 0.6600 0.5138
2.2 1.2820 1.0532 2.432x107? 0.7353 0.5101
2.4 1.4039 1.0846 2.595%x1072 0.7858 0.4869
2.6 2.0741 1.1212 3.475x1072 1.2821 0.2508
2.8 1.4427 1.1372 2.655x107?2 0.7004 0.0846
3.0 2.7710 1.1349 2.589x107?2 0.5196 0.0426
3.2 2.7628 1.1319 2.580x1072 0.4728 0.0576
3.4 2.7461 1.1282 2.564x1072 0.4402 0.0729
3.6 2.7581 1.1292 2.570x1072 0.3974 0.1255
3.8 2.7864 1.1282 2.587x1072 0.4144 0.1392
4.0 2.9186 1.1189 2.678x1072 0.4444 0.1144
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in Fig. 12.

(b) The “fcc” structure. At o larger than 0.7, the
(111) fec crystal is not stable in comparison with the
“fcc” structure. Oscillation at a large amplitude has a
disadvantage with respect to the overlap with particles in
the underlying triangular lattice. If the average position
is situated over the midpoint of the edge of the triangle,
the structure is unstable at small amplitude but the aver-
age of the potential energy over one cycle decreases with
Yo. In the most favorable condition, the particle visits
two stable positions alternately passing over a barrier at
the midpoint of the edge. This is shown in Fig. 11(b).
The change of the potential energy in this structure is
given by the dashed curve in Fig. 12. The potential
energy reaches a minimum at yo = 1.6.

(c) The “layer” structure. If the amplitude of shear os-
cillation is increased further in the “fcc” structure, a par-
ticle will overlap with particles in the underlying layer.
Therefore, the “fcc” structure becomes unstable at larger
~o. Sliding with the direction indicated in Fig. 11(c) is
then more favorable. In this way, the overlap with parti-
cles in the underlying layer can be avoided. The potential
energy of this structure is shown by the dotted curve in
Fig. 12. These three curves intersect at yo = 0.7 and 2.4.
This suggests the successive transitions from the (111) fcc
crystal to the “fcc” structure and the “layer” structure.
The behavior of the potential energy corresponds well
with the two peaks at 79 = 0.6 and vo = 2.6 of n(wo)
in Fig. 10. The good agreement with the simulations

X
.
FIG. 13. The potential energy contours. (a) (111) fcc crys-
tal at yo = 0.5, (b) “fcc” structure at vo = 1.5, (c) “layer”

structure at 7o = 4.0. The energy value is large near the par-
ticles in the neighboring layer, which is indicated by circles.

supports the merit of the sliding layer model.

We have compared the stability of three typical struc-
tures. In our model, we can also determine the most
stable structure at each «y, value by changing the average
position (z{!) and the oscillation direction. This poten-
tial energy curve is shown by open circles in Fig. 12.
The numerical values of the time averaged potential en-
ergy from the molecular dynamics (MD) simulation and
the global minimum energy of the model calculation are
given in Table I. At small 7o, the global minimum curve
agrees with that of the (111) fcc structure. The poten-
tial energy contour at v = 0.5 is depicted in Fig. 13(a).
The contour lines are plotted on a logarithmic scale. The
averaged potential energy at each (z!) is shown in this
figure. The solid circles indicate the positions of par-
ticles in the neighboring layer and the potential energy
becomes high near these points. At v, = 0.5, the mini-
mum is situated very close to the center of the triangular
lattice. With the increase of 7, the energy curve of the
global minimum deviates from that of the (111) fcc struc-
ture because the position of the energy minimum moves
gradually to the middle of the edge. At v = 1.0, the
minimum reaches the edge and remains there after that.
The contour at o = 1.5 is depicted in Fig. 13(b). Here,
the minimum is situated on the edge of the triangle. To
confirm this structural change, we calculated the aver-
aged particle position in the (111) fcc and “fcc” struc-
tures in the MD simulations. This is shown in Fig. 14.
The midpoint of the edge of a triangle is chosen as the
origin. The displacement from the origin is depicted in
this figure. Contrary to the continuous change predicted
in the model calculation, a discontinuous change occurs
in the MD calculation.

Near the second transition point, the global minimum
curve also deviates from that of the “fcc” structure. The
direction of the shear oscillation deviates now from the
direction in Fig. 11(b). At v = 2.6, oscillation along
the direction rotated by 30° from the “fcc” case becomes
most stable. The energy contour at yo = 3.0 is shown in
Fig. 13(c). Now, the amplitude of the oscillation is as

0.4 - . ; .
oa P ed
0.2
0.1
0 1
-0.1

displacement

L]
——
——
@—

0O 0.2 04 06 038
Yo

FIG. 14. The o dependence of the average position in MD
calculations. The origin is chosen on the midpoint of the edge
of a triangle.
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(E)

0 1 2 3
Yo

FIG. 15. The o dependence of the average potential en-
ergy. The solid line is the (100) fcc crystal and the simulation
is started from a (100) fcc crystal. Other notations are the
same as in Fig. 13.

large as the distance between nearest neighbor particle
pairs. It is very important to avoid overlap with the
particles in underlying layers. A narrow valley extends
parallel to one of the bond vectors. The change of the
potential energy in this valley is not large. Therefore, the
required registry of neighboring layers is expected not to
be so strict. This agrees very well with random stacking
of layers observed in the simulations. A sudden change of
the layer orientation will be observed in simulations with
a periodic boundary condition because the continuous
rotation of the sliding layers is prohibited.

C. The (100) fcc case

We have also applied the sliding layer model to the
(100) fcc case. The sliding layers in the (100) fcc crystal
are square lattices and the distance between layers y4p is
smaller than that in the (111) fcc structure and the over-
lap with particles tends to occur much more frequently.
Therefore, under shear oscillation, the (100) fcc structure
is expected to be less stable than the (111) fcc structure.
The average potential energy over one cycle of shear os-
cillation is depicted in the (100) fcc case in Fig. 15. The
curves of the “fcc” and “layer” structures are the same
as those in the (111) fcc case. As expected, the energy
of the (100) fcc crystal increases more rapidly than the
(111) fcc crystal with . This confirms that the (100) fcc
structure is less stable than the (111) fcc structure under
the shear oscillation. The intersection between the (100)
fcc and the “fcc” structures occurs at 4o = 0.6, which
is slightly below that in the (111) fcc case. The transi-

tion point in the simulations occurs at vo = 0.8 which is
larger than the intersection. This type of superloading is
frequently observed in the first-order phase changes. The
transition from the “fcc” structure to the “layer” struc-
ture occurs at o = 2.0 in the simulations in the (100)
fcc case. This transition point is smaller than the predic-
tion in the sliding layer model and the simulations in the
(111) fcc case. This disagreement will be explained as fol-
lows. In simulations starting from the (111) fcc crystal,
the layer structure along the y direction is kept through
the first transition at yo = 0.6. Only the registry of the
layers changes at this point. On the other hand, the
(100) fcc structure is broken and a new layered structure
is reformed. The arrangement of particles changes com-
pletely at the transition point. The number of particles
in our simulations does not allow the perfect (111) type
layered structure. The “fcc” structure in simulations in
the (100) fcc case is distorted inevitably by lattice de-
fects or grain boundaries and has a much higher energy
than the ideal “fcc” structure in the (111) fcc case. The
distorted structure is less stable and the change to the
“layer” structure occurs at smaller .

V. CONCLUSIONS

In our simulations of an atomic system interacting via
the WCA repulsive potential, structural changes closely
corresponding with those observed in experiments on col-
loidal suspensions are obtained. Both of the typical struc-
tures appearing at large shear regions are layer structures
in which triangular lattices are stacked perpendicular to
the velocity gradient vector. The mechanism of these
structural changes is explained by a simple sliding layer
model. In the “fcc” structure arising at an intermedi-
ate shear, particles slide between two potential minima
situated over the center of a triangle in the neighboring
triangular lattices. In the “layer” structure arising at
large shear, particles move along a valley parallel with
the lattice vectors of triangular lattices. In these stable
structures, the overlap with particles in the underlying
lattice is avoided and hence dissipation is considerably
reduced.
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